Please, help us to better know about our user community by answering the following short survey: https://forms.gle/wpyrxWi18ox9Z5ae9
 Eigen  3.3.9
Eigen::PastixLDLT< _MatrixType, _UpLo > Class Template Reference

## Detailed Description

### template<typename _MatrixType, int _UpLo> class Eigen::PastixLDLT< _MatrixType, _UpLo >

A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library.

This class is used to solve the linear systems A.X = B via a LDL^T supernodal Cholesky factorization available in the PaStiX library. The matrix A should be symmetric and positive definite WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX The vectors or matrices X and B can be either dense or sparse

Template Parameters
 MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX

This class follows the sparse solver concept .

Sparse solver concept, class SimplicialLDLT

## Public Member Functions

void analyzePattern (const MatrixType &matrix)

void compute (const MatrixType &matrix)

void factorize (const MatrixType &matrix)

## ◆ analyzePattern()

template<typename _MatrixType , int _UpLo>
 void Eigen::PastixLDLT< _MatrixType, _UpLo >::analyzePattern ( const MatrixType & matrix )
inline

Compute the LDL^T symbolic factorization of matrix using its sparsity pattern The result of this operation can be used with successive matrices having the same pattern as matrix

factorize()

## ◆ compute()

template<typename _MatrixType , int _UpLo>
 void Eigen::PastixLDLT< _MatrixType, _UpLo >::compute ( const MatrixType & matrix )
inline

Compute the L and D factors of the LDL^T factorization of matrix

Compute the LDL^T supernodal numerical factorization of matrix